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1 Introduction

The goal of this assignment is to model a laser heating process. To begin, our model will
analyze a steady-state, 2D case. This is good practice, because bugs can be detected before
advancing to more complicated 3D or transient problems.
The analysis method developed in this project is extremely useful for optimizing existing
additive manufacturing processes. These processes require a detailed understanding of the
mechanical, thermal, and even magnetic fields within bodies.

2 Problem Setup

The steady-state heat transfer problem is governed by the following equation.
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The problem consists of a 1mm square piece of metal. A figure is shown below.

Figure 1: Problem Geometry and Boundary Conditions
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As shown in the previous figure, the object has three isothermal sides (each at 293K)
and one adiabatic side. The laser is applied to a .25 by .2 mm area in the top region of the
square, adjacent to the adiabatic edge. The laser heat source is the following.

z = 2E9
W

m2

The material properties for our object are shown in the following figure.

Figure 2: Conductivity and Melting point of PLA

3 Results

Introduction: This report compares our 2D FEM model with the solution generated using
ANSYS, a commercial FEM software package.

Part 1
Prompt
Check your solution by producing 2D color plots (heat maps) of the solution at steady state;
both in ANSYS and using your own code, and compare them. I recommend using the pcolor
command in MATLAB (Make sure you use the same temperature axis for all the plots).
Result
The plots for both MATLAB and ANSYS are presented on the next page.
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Figure 3: Steady-state Temperature Field —MATLAB

Figure 4: Steady-state Temperature Field —ANSYS [Celsius]

Discussion: As expected, the two solutions are in agreement. The temperatures con-
verge to 293K on the left, bottom, and right edges, which corresponds to the isothermal
boundary condition. The temperature gradients shown in both results are also very similar.
Most importantly, the maximum temperatures are the same;716 Kelvin, to be exact.
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Part 2
Prompt
Provide a plot showing the region of the geometry whose temperature exceeds the melting
temperature of PLA.

Result
The melting of PLA is 473K (200◦C). To identify where melting occurs, I adjusted the
colormap such that it would only plot regions at or above the melting temperature.

Figure 5: Plot of region above melting point [473K]. Dark blue corresponds to temperatures
below melting point

Discussion: It is important to know which region melts when using additive manufac-
turing. This is because materials will be placed on top of existing materials, which need to
be melted to form a solid connection. Furthermore, it will be important t also understand
the transient melted region, to better understand how quickly an operation must be com-
pleted or how long the time between operations must be. For our laser problem, the melted
region consists of the entire area where the laser source is applied, as well as the immediate
surroundings, which intuitively makes sense.
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Part 3
Prompt
Provide the full derivation of the FEM weakform and FEM matrix form for this problem.
Result
FEM Weak Form Derivation We will start with the strong form of the heat equation.
In the equations below, z is the source term.

ρc
dT

dt
= ∇ · (K · ∇T ) + z

Since we are dealing with steady-state, the problem can be simplified to the following.

∇ · (K · ∇T ) + z = 0

Per usual, we start by multiplying by a test function v and then integrating over the body.
Now, we have the following. ∫

Ω

(
∇ · (K · ∇T ) + z

)
· v dΩ = 0

Before continuing, we must review the product rule and divergence theorem.
Product Rule: (let σ = K · ∇T )

∇ · (σ · v) = (∇ · σ) · v +∇v : σ

Divergence Theorem: (let F = K · ∇T )∫
Ω

(∇ · F )dΩ =

∫
dΩ

(F · n)dA

Using the above product rule analog for our heat transfer problem, we can rewrite our
equation in the following manner.∫

Ω
∇ · (K∇T · v)dΩ−

∫
Ω
∇v : K∇TdΩ +

∫
Ω
z · v = 0

Using the divergence theorem, we can rewrite the first term as:∫
dΩ
K∇Tv · n dA

We now have the weak form of the heat equation.∫
Ω
∇v : K∇TdΩ =

∫
Ω
z · v +

∫
dΩ
K∇Tv · n dA

The last term, which is over an area instead of a volume, is our flux term. The flux is
defined as:

q = K∇T · n

Rewriting our equation, we now have the weak form for the heat equation.
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∫
Ω
∇v : K∇T dΩ =

∫
Ω
zv dΩ +

∫
dΩ
qv dA

Note: For the 2D case, replace the dΩ terms with dAe, and replace dA with dL (line
integral along the edge of object).

FEM Matrix Form Derivation This section will be very similar to the notes provided
to us on 2D thermo implementation. We will start by focusing on the left side of our weak
form equation, which corresponds to the stiffness matrix term. Since we are in 2D, the
gradient matrix will be 2x1, K will be 2x2.∫

Ae

([ ∂
∂x
∂
∂y

]
v
)T [

K
] ( [ ∂

∂x
∂
∂y

]
T
)
dAe

Now, we do not know what T is yet. Just like in our 1D problem where we measured
deflection, we now define T as the summation of N test functions.

T =
N∑
j=1

ajφj

We do the same for v.

v =

N∑
i=1

biφi

We can then rewrite these test functions in matrix form, where
[
b
]

is a vector of all bi
and

[
φ
]

is a vector of all φi.

[
b
]T [ ∫

Ae

([ ∂
∂x
∂
∂y

] [
φ
] )T [

K
] ( [ ∂

∂x
∂
∂y

] [
φ
] )
dAe

] [
a
]

Now that we have the setup for the integration across the entire body, we then focus our
effort on setting up the problem for a single element. First, convert the ∇ functions to the
master element space.

∂

∂x
=

∂

∂ζ1

∂ζ1

∂x
+

∂

∂ζ2

∂ζ2

∂x

∂

∂y
=

∂

∂ζ1

∂ζ1

∂y
+

∂

∂ζ2

∂ζ2

∂y

These equations can be rewritten in matrix form, as desired.[ ∂
∂x
∂
∂y

]
=

[
∂ζ1
∂x

∂ζ2
∂x

∂ζ1
∂y

∂ζ2
∂y

][
∂
∂ζ1
∂
∂ζ2

]
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The square matrix is known as F−T , or the deformation gradient, or the inverse transpose
matrix.

We must also define the Jacobian for the transformation to the master element space.

J = det(F )

F is defined as

[
∂x
∂ζ1

∂x
∂ζ2

∂y
∂ζ1

∂y
∂ζ2

]
Finally, we can write the matrix form for the stiffness matrix of one element

∫
Âe

( [
F−T ] [ ∂

∂ζ1
∂
∂ζ2

] [
φ̂
] )T [

K
] ( [

F−T ] [ ∂
∂ζ1
∂
∂ζ2

] [
φ̂
] )
J dÂe

Next, we will rewrite the Force Matrix for the element. Just like before, v can be rewritten
as a summation and then as a matrix form of b ∗ φ. Since the b’s cancel out, we are left
with the following.

R =

∫
Ae

[
φ
]
z dAe

Next, we can rewrite the element force matrix in the master element domain.

Re =

∫
Âe

[
φ̂
]
zJ dAe

Note: The same procedure could be done for the flux term, but in both of our reports the
flux term equals zero.

Deriving the Penalty Term
We can add the following Penalty term to our differential equation, if we desire to solve
the problem without removing rows and columns from the stiffness and force matrices.

P ∗
∫
L
v(T ∗ − T )dL

For our model, the penalty term forces nodes with a Dirichlet boundary condition (i.e.
nodes on the isothermal boundary) to be T ∗ (293K). This is useful because it removes the
post-processing and re-indexing associated with modifying the stiffness matrix.

Using the test functions described previously, our penalty term can be rewritten as the
following. Note that the penalty method for 2D Heat flux is a line integral along the edge
of the object.
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P ∗ [b]T ∫
L

[
φ
]T (

T ∗ −
[
φ
] [
a
] )
dL

After expanding out the equation and converting to the master-element space, we have the
following.

P ∗
∫
L̂

( [
φ̂
]T
T ∗ −

[
φ̂
]T [

φ̂
] [
a
] )
JLdL

JL is the ratio of the lengths of the edge in the real space to the master-element space.
Finally, the appropriate parts of the penalty term are applied to the stiffness and force
matrices.

Added to Stiffness Matrix:
(
P ∗
∫
L̂

[
φ̂
]T [

φ̂
]
JLdL

) [
a
]

Added to Force Matrix: P ∗
∫
L̂

[
φ̂
]T
T ∗JLdL

Discussion: The weak form and 2D derivations for the steady-state heat equation are
much more complicated than our simple 1D case from past reports. It requires a more
thorough understanding of multivariable calculus. However, it is rewarding to have gone
through this derivation and actually understand how a program like ANSYS actually solves
these types of problems.

Part 4
Prompt
Describe the 2D FEM theory you used to construct your code.
Result This section will discuss how to implement Gaussian quadrature in 2D, as well as
the essential components for mapping from the element to global matrices. I will start by
discussing Gaussian quadrature.
Gaussian Quadrature
Just like in previous reports, I used four Gauss points. However, in 2D, the problem must
be integrated in both the ζ1 and ζ2 directions. Therefore, there are actually 16 locations
within each element that are used for calculating the element stiffness and force matrices.
Furthermore, since each element has four nodes, there are now four φ̂ equations.

φ̂1 =
1

4
(1− ζ1) ∗ (1− ζ2)

φ̂2 =
1

4
(1 + ζ1) ∗ (1− ζ2)

φ̂3 =
1

4
(1 + ζ1) ∗ (1 + ζ2)

φ̂4 =
1

4
(1− ζ1) ∗ (1 + ζ2)
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We also have two mapping functions now, which map from the master-element space to the
corresponding x or y value in the real domain.

xmap = X1 ∗ φ̂1 +X2 ∗ φ̂2 +X3 ∗ φ̂3 +X4 ∗ φ̂4

ymap = Y1 ∗ φ̂1 + Y2 ∗ φ̂2 + Y3 ∗ φ̂3 + Y4 ∗ φ̂4

The matrix F is found by taking derivatives of the mapping functions xmap and ymap.

F11 =
∂xmap
∂ζ1

F12 =
∂xmap
∂ζ2

F21 =
∂ymap
∂ζ1

F22 =
∂ymap
∂ζ2

Mapping from Local to Global
Three matrices had to be established before assembling the global matrices.

• Element Matrix (keeps track of nodes for each element) [4-by-# Elements]

• BC Matrix (keeps track of boundary conditions for each element)[2-by-# Elements]

• Position Matrix (keeps track of x and y location of each node [2-by-# Nodes]

To ensure our method was in line with proper FEM theory, we took precautions to ensure
the following

• Element node indexing done in a consistent manner (counter-clockwise)

• Stiffness Matrix symmetrical positive definite

• Laser source term only applied to elements within source region

To ensure our numbering was consistent, we numbered nodes row by row. To ensure the
laser source term was applied correctly, we made sure that nodes lying on the edge of the
source for elements outside of the source area did not receive a source value in their force
matrix.

Discussion: There were many challenges associated with implementing the 2D FEM
code. Some issues I faced involved improperly implementing Gaussian Quadrature. At
first, I only checked four points within the element, which corresponds to the diagonal of
the element. Also, I originally calculated the F-inverse-transpose matrix wrong, which gave
me NaN for my stiffness matrix. Finally, I had trouble implementing the penalty method,
and ended up solving the problem using the row/column elimination method before going
back and attempting penalty method again.
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4 Appendix

This section contains the .m files that were used in this report.

• hw5 nopenalty final.m

• gauss quad4 hw5 final.m
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